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Nonreciprocal reconfigurable microwave
optomechanical circuit
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Nonreciprocal microwave devices are ubiquitous in radar and radio communication

and indispensable in the readout chains of superconducting quantum circuits. Since they

commonly rely on ferrite materials requiring large magnetic fields that make them bulky and

lossy, there has been significant interest in magnetic-field-free on-chip alternatives, such as

those recently implemented using the Josephson nonlinearity. Here, we realize reconfigurable

nonreciprocal transmission between two microwave modes using purely optomechanical

interactions in a superconducting electromechanical circuit. The scheme relies on the

interference in two mechanical modes that mediate coupling between the microwave

cavities and requires no magnetic field. We analyse the isolation, transmission and the noise

properties of this nonreciprocal circuit. Finally, we show how quantum-limited circulators

can be realized with the same principle. All-optomechanically mediated nonreciprocity

demonstrated here can also be extended to directional amplifiers, and it forms the basis

towards realizing topological states of light and sound.
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Nonreciprocal devices, such as isolators, circulators
and directional amplifiers, exhibit altered transmission
characteristics if the input and output channels are

interchanged. They are essential to several applications in signal
processing and communication, as they protect devices
from interfering signals1. At the heart of any such device lies
an element breaking Lorentz reciprocal symmetry for
electromagnetic sources2, 3. Such elements have included
ferrite materials4–6, magneto-optical materials7–10, optical
nonlinearities11–13, temporal modulation14–19, chiral
atomic states20 and physical rotation21. Typically, a commercial
nonreciprocal microwave apparatus exploits ferrite materials
and magnetic fields, which leads to a propagation-direction-
dependent phase shift for different field polarizations.
A significant drawback of such devices is that they are ill-suited
for sensitive superconducting circuits, since their strong magnetic
fields are disruptive and require heavy shielding. In recent years,
the major advances in quantum superconducting circuits22,
that require isolation from noise emanating from readout
electronics, have led to a significant interest in nonreciprocal
devices operating at the microwave frequencies that dispense with
magnetic fields and can be integrated on-chip.

As an alternative to ferrite-based nonreciprocal technologies,
several approaches have been pursued towards nonreciprocal
microwave chip-scale devices. Firstly, the modulation in time of
the parametric couplings between modes of a network can
simulate rotation about an axis, creating an artificial magnetic
field14, 18, 23, 24 rendering the system nonreciprocal with respect
to the ports. Secondly, phase matching of a parametric interaction
can lead to nonreciprocity, since the signal only interacts with
the pump when copropagating with it and not in the
opposite direction. This causes travelling-wave amplification to be
directional24–27. Phase-matching-induced nonreciprocity can
also occur in optomechanical systems28, 29, where parity
considerations for the interacting spatial modes apply30–32.
Finally, interference in parametrically coupled multi-mode
systems can be used. In these systems, nonreciprocity arises due
to interference between multiple coupling pathways along with
dissipation in ancillary modes33. Here, dissipation is a key
resource to break reciprocity, as it forms a flow of energy always
leaving the system, even as input and output are interchanged.
It has therefore been viewed as reservoir engineering34.
Following this approach, nonreciprocity has recently
been demonstrated in Josephson-junctions-based microwave
circuits35, 36 and in a photonic-crystal-based optomechanical
circuit37. These realizations and theoretical proposals to achieve
nonreciprocity in multi-mode systems rely on a direct, coherent
coupling between the electromagnetic input and output modes.

Here, in contrast, we describe a scheme to attain reconfigurable
nonreciprocal transmission without a need for any direct
coherent coupling between input and output modes, using
purely optomechanical interactions28, 29. This scheme neither
requires cavity–cavity interactions nor phonon–phonon
coupling, which are necessary for the recently demonstrated
optomechanical nonreciprocity in the optical domain37.
Two paths of transmission between the microwave modes are
established, through two distinct mechanical modes. Interference
between those paths with differing phases forms the basis of the
nonreciprocal process38, 39. In fact, due to the finite quality factor
of the intermediary mechanical modes, both conversion paths
between the electromagnetic modes are partly dissipative in
nature. Nonreciprocity is in this case only possible by breaking
the symmetry between the two dissipative coupling pathways.
We describe the mechanism in detail below, shedding some light
on the essential ingredients for nonreciprocity using this
approach.

Results
Theoretical model. We first theoretically model our system to
reveal how nonreciprocity arises. We consider two microwave
modes (described by their annihilation operators â1, â2) having
resonance frequencies ωc,1, ωc,2 and dissipation rates κ1, κ2,
which are coupled to two mechanical modes (described by
the annihilation operators b̂1, b̂2) having resonance frequencies
Ω1, Ω2 and dissipation rates Γm,1, Γm,2 (Fig. 1a). The radiation-
pressure-type optomechanical interaction has the form28, 29

g0;ijâ
†
i âiðb̂j þ b̂

†

j Þ (in units where ħ= 1), where g0,ij designates the
vacuum optomechanical coupling strength of the ith microwave
mode to the jth mechanical mode. Four microwave tones are
applied, close to each of the two lower sidebands of the two
microwave modes, with detunings of Δ11=Δ21= −Ω1 − δ and
Δ12=Δ22= −Ω2 + δ (Fig. 2c). We linearize the Hamiltonian,
neglect counter-rotating terms, and write it in a rotating frame
with respect to the mode frequencies (Supplementary Note 1)

H ¼ �δ b̂†1b̂1 þ δ b̂†2b̂2 þ g11ðâ1b̂†1 þ â†1b̂1Þ þ g21ðâ2b̂†1 þ â†2b̂1Þ
þg12ðâ1b̂†2 þ â†1b̂2Þ þ g22ðeiϕâ2b̂†2 þ e�iϕâ†2b̂2Þ

ð1Þ
where âi and b̂j are redefined to be the quantum fluctuations
around the linearized mean fields. Here gij ¼ g0;ij

ffiffiffiffiffi
nij

p
are the

field-enhanced optomechanical coupling strengths, where nij is
the contribution to the mean intracavity photon number due to
the drive with detuning Δij. Although in principle each coupling
is complex, without loss of generality we can take all to be real
except the one between â2 and b̂2 with a complex phase ϕ.

We start by considering frequency conversion through a single
mechanical mode. Neglecting the noise terms, the field exiting the
cavity â2 is given by â2;out ¼ S21â1;in þ S22â2;in, which defines
the scattering matrix Sij. For a single mechanical pathway, setting
g12= g22= 0 and δ= 0, the scattering matrix between input and
output mode becomes

S21ðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex;1κex;2
κ1κ2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiC11C21
p

Γm;1
Γeff ;1

2 � iω
; ð2Þ

where κex,1, κex,2 denote the external coupling rates of the
microwave modes to the feedline, and the (multiphoton)
cooperativity for each mode pair is defined as
Cij ¼ 4g2ij=ðκiΓm;jÞ. Conversion occurs within the modified
mechanical response over an increased bandwidth
Γeff ;1 ¼ Γm;1 1þ C11 þ C21ð Þ. This scenario, where a mechanical
oscillator mediates frequency conversion between electromag-
netic modes, has recently been demonstrated40 with a microwave
optomechanical circuit41, and moreover used to create a
bidirectional link between a microwave and an optical mode42.
Optimal conversion, limited by internal losses in the microwave
cavities, reaches at resonance S21j j2max¼ κex;1κex;2

κ1κ2
in the limit of large

cooperativities C11 ¼ C21 � 1.
We next describe the nonreciprocal transmission of the full

system with both mechanical modes. We consider the ratio of
transmission amplitudes given by

S12ðωÞ
S21ðωÞ ¼

g11χ1ðωÞg21 þ g12χ2ðωÞg22eþiϕ

g11χ1ðωÞg21 þ g12χ2ðωÞg22e�iϕ
ð3Þ

with the mechanical susceptibilities defined as χ�1
1 ðωÞ ¼

Γm;1=2� i δþ ωð Þ and χ�1
2 ðωÞ ¼ Γm;2=2þ i δ� ωð Þ. Conversion

is nonreciprocal if the above expression has a magnitude that
differs from 1. If S21 and S12 differ only by a phase, it can be
eliminated by a redefinition of either â1 or â224, 33. Upon a
change in conversion direction, the phase ϕ of the coherent
coupling (between the microwave and mechanical mode) is
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conjugated, while the complex phase associated with the response
of the dissipative mechanical modes remains unchanged.
Physically, scattering from 1 → 2 is related to scattering from
2 → 1 via time-reversal, which conjugates phases due to coherent
evolution of the system. Dissipation is untouched by such an
operation and thus remains invariant. Indeed, the mechanical
dissipation is an essential ingredient for the nonreciprocity to
arise in this system, but not sufficient on its own. In fact, if we
align the frequency conversion windows corresponding to the two
mechanical modes by setting δ= 0, the system becomes reciprocal
on resonance (ω= 0), since there is no longer any phase
difference between numerator and denominator. This situation
corresponds to two symmetric pathways resulting from purely
dissipative couplings; they can interfere only in a reciprocal way.

Conditions for isolation. We study the conditions for isolation
when backward transmission S12 vanishes while forward
transmission S21 is non-zero. A finite offset 2δ between the
mechanical conversion windows causes an intrinsic phase shift
for a signal on resonance (ω= 0) travelling one path compared to

the other, as it falls either on the red or the blue side of each
mechanical resonance. The coupling phase ϕ is then adjusted to
cancel propagation in the backward direction S12 (Fig. 1c),
by cancelling the two terms in the numerator of Eq. (3).
In general, there is always a frequency ω for which |g11χ1(ω)g21|
= |g12χ2(ω)g22|, such that the phase ϕ can be tuned to cancel
transmission in one direction. Specifically, for two mechanical
modes with identical decay rates (Γm,1= Γm,2= Γm) and
symmetric couplings (g11g21= g12g22), we find that transmission
from ports 2 to 1 vanishes on resonance if

Γm

2δ
¼ tan

ϕ

2
: ð4Þ

The corresponding terms of the denominator will have a
different relative phase, and the signal will add constructively
instead, in the forward direction (Fig. 1b). The device thus acts as
an isolator from â1 to â2, realized without relying on the
Josephson nonlinearity35, 36. We now describe the conditions to
minimize insertion loss of the isolator in the forward direction.
Still considering the symmetric case, the cooperativity is set to be
the same for all modes (Cij ¼ C). For a given separation δ,
transmission on resonance (ω= 0) in the isolating direction has
the maximum

S21j j2max¼
κex;1κex;2
κ1κ2

1� 1
2C

� �
ð5Þ

for a cooperativity C ¼ 1=2þ 2δ2=Γ2
m. As in the case for a single

mechanical pathway in Eq. (2), for large cooperativity, the isolator
can reach an insertion loss only limited by the internal losses of
the microwave cavities.

The unusual and essential role of dissipation in this
nonreciprocal scheme is also apparent in the analysis of the
bandwidth of the isolation. Although the frequency conversion
through a single mechanical mode has a bandwidth Γeff,j (Eq. (2)),
caused by the optomechanical damping of the pumps on the
lower sidebands, the nonreciprocal bandwidth is set by the
intrinsic mechanical damping rates. Examination of Eq. (3)
reveals that nonreciprocity originates from the interference of
two mechanical susceptibilities of widths Γm,j. One can conclude
that the intrinsic mechanical dissipation, which takes energy out
of the system regardless of the transmission direction, is an
essential ingredient for the nonreciprocal behaviour reported
here, as discussed previously33, 34. In contrast, optomechanical
damping works symmetrically between input and output modes.
By increasing the coupling rates, using higher pump powers, the
overall conversion bandwidth increases, while the nonreciprocal
bandwidth stays unchanged.

Experimental realization. We experimentally realize this
nonreciprocal scheme using a superconducting circuit
optomechanical system in which mechanical motion is
capacitively coupled to a multimode microwave circuit41.
The circuit, schematically shown in Fig. 2a, supports two
electromagnetic modes with resonance frequencies (ωc,1, ωc,2)=
2π ⋅ (4.1, 5.2) GHz and energy decay rates (κ1, κ2)= 2π ⋅ (0.2, 3.4)
MHz, both of them coupled to the same vacuum-gap capacitor.
We utilize the fundamental and second order radially symmetric
(0, 2) modes of the capacitor’s mechanically compliant top plate43

(Fig. 2b, d) with resonance frequencies (Ω1, Ω2)= 2π ⋅ (6.5, 10.9)
MHz, intrinsic energy decay rates (Γm,1, Γm,2)= 2π ⋅ (30, 10) Hz
and optomechanical vacuum coupling strengths (g0,11, g0,12)=
2π ⋅ (91, 12) Hz, respectively (with g0,11≈ g0,21 and g0,12≈ g0,22,
i.e. the two microwave cavities are symmetrically coupled to the
mechanical modes). The device is placed at the mixing chamber

a

b c

Fig. 1 Optomechanical nonreciprocal transmission via interference of two
asymmetric dissipative coupling pathways. a Two microwave modes â1 and
â2 are coupled via two mechanical modes b̂1 and b̂2 through
optomechanical frequency conversion (as given by the coupling constants
g11, g21, g12, g22). Nonreciprocity is based on the interference between the
two optomechanical (conversion) pathways g11, g21 and g12, g22, in the
presence of a suitably chosen phase difference ϕ between the coupling
constants as well as the deliberate introduction of an asymmetry in the
pathways. b, c The symmetry between the pathways can be broken by
off-setting the optomechanical transmission windows through each
mechanical mode (dashed lines in dark and light green) by a frequency
difference 2δ, resulting in different |S21| and |S12| (solid lines). Each single
pathway, in the absence of the other mode, is described by Eq. (2). In the
forward direction b, the two paths interfere constructively, allowing
transmission and a finite scattering matrix element S21 on resonance with
the first microwave cavity. In contrast, in the backward direction c, the
paths interfere destructively, such that S12≈ 0, thereby isolating port 1 from
port 2 on resonance with the second microwave cavity. The isolation
bandwidth is determined by the intrinsic dissipation rate of the mechanical
modes
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Fig. 3 Experimental demonstration of nonreciprocity. a–c Power transmission between modes 1 and 2 as a function of probe detuning, shown in both
directions for pump phases ϕp= −0.8π, 0, 0.8π radians (respectively a–c). Isolation of more than 20 dB in the forward c and backward a directions is
demonstrated, as well as reciprocal behaviour b. d The ratio of transmission |S21/S12|2, representing a measure of nonreciprocity, is shown as a function of
pump phase ϕp and probe detuning. Two regions of nonreciprocity develop, with isolation in each direction. The system is reconfigurable as the direction of
isolation can be swapped by taking ϕp → −ϕp. e Theoretical ratio of transmission from Eq. (3), calculated with independently estimated experimental
parameters. The theoretical model includes effectively lowered cooperativities for the mechanical mode b̂1 due to cross-damping (optomechanical damping
of the lower frequency mechanical mode by the pump on the sideband of the higher frequency mechanical mode) acting as an extra loss channel
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Fig. 2 Implementation of a superconducting microwave circuit optomechanical device for nonreciprocity. a A superconducting circuit featuring two
electromagnetic modes in the microwave domain is capacitively coupled to a mechanical element (a vacuum-gap capacitor, dashed rectangle) and
inductively coupled to a microstrip feedline. The end of the feedline is grounded and the circuit is measured in reflection. b Scanning electron micrograph of
the drum-head-type vacuum gap capacitor (dashed rectangle in a) with a gap distance below 50 nm, made from aluminium on a sapphire substrate.
The scale bar indicates 2 μm. c Frequency domain schematic of the microwave pump setup to achieve nonreciprocal mode conversion. Microwave pumps
(red bars) are placed at the lower motional sidebands—corresponding to the two mechanical modes—of both microwave resonances (dashed purple lines).
The pumps are detuned from the exact sideband condition by ±δ= 2π ⋅ 18 kHz, creating two optomechanically induced transparency windows detuned by
2δ from the microwave resonance frequencies (denoted by ωc,1 and ωc,2, vertical dashed lines). The phase ϕp of one the pumps is tuned. The propagation of
an incoming signal (with frequency ωs,1 or ωs,2, solid grey bars) in the forward and backward direction depends on this phase and nonreciprocal microwave
transmission can be achieved. d Finite-element simulation of the displacement of the fundamental (0, 1) and second order radially symmetric (0, 2)
mechanical modes (with measured resonant frequencies Ω1/2π= 6.5MHz and Ω2/2π= 10.9MHz, respectively) which are exploited as intermediary
dissipative modes to achieve nonreciprocal microwave conversion
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of a dilution refrigerator at 200 mK and all four incoming pump
tones are heavily filtered and attenuated to eliminate Johnson and
phase noise (details are published elsewhere44). We establish a
parametric coupling between the two electromagnetic and the two
mechanical modes by introducing four microwave pumps with
frequencies slightly detuned from the lower motional sidebands
of the resonances, as shown in Fig. 2c and as discussed above. An
injected probe signal ωs1(s2) around the lower (higher) frequency
microwave mode is then measured in reflection using a vector
network analyser.

Frequency conversion in both directions, |S21(ω)|2 and
|S12(ω)|2, are measured and compared in Fig. 3a–c. The powers
of the four pumps are chosen such that the associated individual
cooperativities are given by C11 ¼ 520, C21 ¼ 450, C12 ¼ 1350
and C22 ¼ 1280. The detuning from the lower motional
sidebands is set to δ= 2π ⋅ 18 kHz. By pumping both cavities on
the lower sideband associated with the same mechanical mode, a
signal injected on resonance with one of the modes will
be frequency converted to the other mode. This process can
add negligible noise, when operating with sufficiently high
cooperativity, as demonstrated recently40. In the experiment,
the four drive tones are all phase-locked and the phase of one
tone ϕp is varied continuously from −π to π. The pump phase is
linked to the coupling phase ϕ by a constant offset, in our case
ϕp≈ ϕ + π. Between the two transmission peaks corresponding to
each mechanical mode, a region of nonreciprocity develops,
depending on the relative phase ϕp.

The amount of reciprocity that occurs in this process is
quantified and measured by the ratio of forward to backward
conversion |S21/S12|2. Figure 3d shows this quantity as a function
of probe detuning and the relative pump phase. Isolation of
more than 20 dB is demonstrated in each direction in a
reconfigurable manner, i.e. the direction of isolation can be

switched by taking ϕp → −ϕp, as expected from Eq. (4). The ideal
theoretical model, which takes into account Γm,1≠ Γm,2,
predicts that the bandwidth of the region of nonreciprocity is
commensurate with the arithmetic average of the bare
mechanical dissipation rates, ~2π · 20 Hz. However, given
the significantly larger coupling strength of the fundamental
mechanical mode compared to the second order mode, and
that κ2/Ω1,2 is not negligible, the pump detuned by Ω2 − δ from
the microwave mode â2 introduces considerable cross-damping
(i.e. resolved sideband cooling) for the fundamental mode.
This cross-damping, measured separately to be
ΓðcrossÞ
m;1 � 2π � 20 kHz at the relevant pump powers, widens the

bandwidth of nonreciprocal behaviour by over two orders of
magnitude and effectively cools the mechanical oscillator. It also
acts as a loss in the frequency conversion process and therefore
effectively lowers the cooperativities to ðC11; C21Þ � ð0:78; 0:68Þ.
This lowered cooperativity accounts for the overall ~10 dB loss in
the forward direction. This limitation can be overcome in a future
design by increasing the sideband resolution with decreased κi or
utilising the fundamental modes of two distinct mechanical
elements with similar coupling strengths. To compare the
experiment to the theory we use a model that takes into account
the cross-damping and an increased effective mechanical
dissipation of the fundamental mode. The model is compared
to the experimental data in Fig. 3e, showing good qualitative
agreement.

Noise properties. From a technological standpoint, it does
not suffice for an isolator to have the required transmission
properties; since its purpose is to protect the input from any noise
propagating in the backward direction, the isolator’s own noise
emission is relevant. We, therefore, return to the theoretical
description of the ideal symmetric case and derive the noise
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Fig. 4 Asymmetric noise emission of the nonreciprocal circuit. The noise emission is mainly due to mechanical thermal noise, that is converted through two
paths to the microwave modes. The resulting interference creates a different noise pattern in the forward a–c and the backward d–f directions when the
circuit is tuned as an isolator from mode â1 to â2. a, d The two possible paths for the noise are shown for each mechanical mode. For b̂2, the direct path
(orange) and the indirect path going through mode b̂1 (yellow) are highlighted (the corresponding paths for b̂1 are shown in grey). b, e Each path on its own
would result in a wide noise spectrum that is equally divided between the two microwave cavities (dashed yellow and orange lines). When both paths are
available, however, the noise interferes differently in each direction (solid lines). In the backward direction e, a sharp interference peak appears, of much
larger amplitude than the broad base. The theoretical curves (on an arbitrary logarithmic scale) are shown for the symmetric case (Γm,1= Γm,2) and for the
single mode b̂2. Note that for the mode b̂1, the shape of the asymmetric peak in the backward noise would be the mirror image. c, f Measured output
spectra of modes â2 (c) and â1 (f), calibrated to show the photon flux leaving the circuit. Because cross-damping provides extra cooling for the mode b̂1, the
thermal noise of b̂2 is expected to dominate
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properties expected from the device, in the limit of overcoupled
cavities (κex,i≈ κi). In the forward direction and on resonance, the
emitted noise amounts to Nfwð0Þ ¼ 1=2þ ðnm;1 þ nm;2Þ=ð4CÞ,
where nm;j is the thermal occupation of each mechanical mode
(Supplementary Note 2). In the limit of low insertion loss and
large cooperativity, the added noise becomes negligible in the
forward direction. More relevant for the purpose of using an
isolator to protect sensitive quantum apparatus is the noise
emitted in the backward direction, given by
Nbwð0Þ ¼ 1=2þ ðnm;1 þ nm;2Þ=2. Here the noise is directly
commensurate with the occupation of the mechanics which
can be of hundreds of quanta even at cryogenic millikelvin
temperatures, due to the low mechanical frequencies. This is
a direct consequence of isolation without reflection, since it
prevents fluctuations from either cavity to emerge in the

backward direction. In order to preserve the commutation
relations of the bosonic output modes, the fluctuations
consequently have to originate from the mechanical modes.
A practical low-noise design, therefore, requires a scheme to
externally cool the mechanical modes, e.g. via sideband cooling
using an additional auxiliary microwave mode.

The origin of this noise asymmetry can be understood as noise
interference. The thermal fluctuations of one mechanical
oscillator are converted to microwave noise in each cavity
through two paths, illustrated in Fig. 4a, d: a direct (orange) and
an indirect (yellow) link. Each pathway, on its own and with the
same coupling strength, would result in symmetric noise
that decreases in magnitude with increasing cooperativity. When
both are present, however, the noise interferes with itself
differently in each direction (Supplementary Note 3). In the
forward direction, the noise interferes destructively (Fig. 4b)
leading to low added noise, but in the backward direction, a sharp
interference peak arises (Fig. 4e) with finite noise in the
nonreciprocal bandwidth even in the high-cooperativity limit.
In an intuitive picture, the circuit acts as a circulator that routes
noise from the output port to the mechanical thermal bath and in
turn the mechanical noise to the input port. We demonstrate
experimentally the noise asymmetry by detecting the output
spectra at each microwave mode while the device isolates
the mode â1 from â2 by more than 25 dB (Fig. 4c, f).
The cooperativities are here set to ðC11; C21; C12; C22Þ ¼
ð20:0; 14:2; 106; 89Þ with a cross-damping ΓðcrossÞ

m;1 � 2π � 2:6
kHz, in order to optimize the circuit for a lower insertion loss
and increase the noise visibility. As there is additional cooling
from the off-resonant pump on mode b̂1, we expect noise from b̂2
to dominate.

Quantum-limited circulator. There exists a way to circumvent
the mechanical noise entirely: introducing one extra microwave
mode â3, we can realize a circulator, where instead of mechanical
fluctuations, the fluctuations from the third microwave mode
emerge in the backward direction. The scheme is illustrated in
Fig. 5a. As before, the two mechanical modes are used to create
two interfering pathways, now between the three microwave
cavities. Since there are now two independent loops, two phases
matter; we choose the phases associated to the couplings g11
and g21 and set them respectively to ϕ1= 2π/3 and ϕ2= −2π/3.
With the mechanical detunings set to δi ¼

ffiffi
3

p
2 ðC þ 1

3ÞΓm;i, the
system then becomes a circulator that routes the input of port â1
to â2, â2 to â3 and so on (Supplementary Note 4). Critically
and in contrast to above, counter-propagating signals are not
dissipated in the mechanical oscillators, but directed to the other
port, with two advantages. First, the bandwidth of nonreciprocity
is not limited to the mechanical dissipation rate but
instead increases with C until reaching the ultimate limit given
by the cavity linewidth (Fig. 5b, c). Second, the mechanical
noise emission is symmetrically spread between the three
modes, and over the wide conversion bandwidth (Fig. 5d, e).
In the large cooperativity limit, the nonreciprocal process
becomes quantum limited, irrespective of the temperature of the
mechanical thermal baths.

Discussion
In conclusion, we described and experimentally demonstrated a
new scheme for reconfigurable nonreciprocal transmission in the
microwave domain using a superconducting optomechanical
circuit. This scheme is based purely on optomechanical couplings,
thus it alleviates the need for coherent microwave cavity–cavity
(or direct phonon–phonon) interactions, and significantly
facilitates the experimental realization, in contrast to recently
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Fig. 5 Proposal for a microwave optomechanical circulator. a With a third
microwave mode â3 coupled to the same two mechanical oscillators,
circulation can be achieved between the three microwave cavities. The
circuit now involves two independent loops, with two phases ϕ1 and ϕ2

that can be tuned with the phases associated with g21 and g11, respectively.
b, c The theoretical transmission in the circulating direction (counter-
clockwise, in red) and the opposite direction (clockwise, in blue) are shown
for the cooperativities C ¼ 100 (b) and C ¼ 1000 (c). The isolation
bandwidth scales with C and is only limited by the energy decay rates of the
microwave modes. Experimentally realistic parameters are chosen with
overcoupled cavities of energy decay rates κ1= κ2= κ3= 2π ⋅ 200 kHz and
Γm,1= Γm,2= 2π ⋅ 100 Hz. d, e Noise emission spectra for the same two
cooperativities (C ¼ 100 (d) and C ¼ 1000 (e)), for nm;1 ¼ nm;2 ¼ 800.
Note that for the circulator the noise is symmetric for all the cavities, and
that it decreases with increasing cooperativity
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used approaches of optomechanical nonreciprocity in the optical
domain37. Nonreciprocity arises due to interference in the two
mechanical modes, which mediate the microwave cavity–cavity
coupling. This interference also manifests itself in the asymmetric
noise output of the circuit. This scheme can be readily
extended to implement quantum-limited phase-preserving and
phase-sensitive directional amplifiers45. Moreover, an additional
microwave mode enables quantum-limited microwave circulators
on-chip with large bandwidth, limited only by the energy decay
rate of the microwave modes. Finally, the presented scheme can
be generalized to an array, and thus can form the basis to
create topological phases of light and sound46 or topologically
protected chiral amplifying states47 in arrays of electromechanical
circuits, without requiring cavity–cavity or phonon–phonon
mode hopping interactions.

Data availability. The code and data used to produce the plots
within this paper are available at http://dx.doi.org/10.5281/
zenodo.816171. All other data used in this study are available
from the corresponding authors upon reasonable request.
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SUPPLEMENTARY NOTE 1: THEORETICAL BACKGROUND

In this note we derive the effective Hamiltonian relevant for our system, calculate the input-output scattering matrix for the
electromagnetic modes and discuss the conditions for obtaining nonreciprocal microwave transmission.

We consider two mechanical degrees of freedom whose positions parametrically modulate the frequencies of two electromag-
netic modes via radiation-pressure coupling [1]. The Hamiltonian describing this situation is given by (~ = 1)

Ĥ =

2∑
i=1

(
ωc,iâ

†
i âi + Ωib̂

†
i b̂i

)
+ Ĥint + Ĥdrive, (1)

where â1 and â2 are the annihilation operators associated respectively with the two electromagnetic modes with frequencies
ωc,1 and ωc,2, b̂1 and b̂2 are those for the two mechanical modes with respective mechanical frequencies Ω1 and Ω2, and Ĥdrive

describes the electromagnetic pumps. Radiation-pressure coupling between the microwave and mechanical modes is described
by the interaction Hamiltonian [1]

Ĥint = −
2∑
j=1

2∑
k=1

g0,jk â
†
j âj(b̂k + b̂†k), (2)

with g0,jk the vacuum optomechanical coupling strength between electromagnetic mode j and mechanical mode k and where
we neglect cross coupling terms ∝ â†i âj , which is a good approximation for spectrally distinct modes |ωc,1 − ωc,2| � Ωi [2, 3].

In the experiment, both cavity modes are driven with two microwave tones each. These four tones are close to the lower
mechanical sidebands, but the ones driving the mechanical sidebands at frequency Ω1 are slightly detuned to the red, whereas
the ones driving the sidebands at frequency Ω2 are slightly detuned to the blue from the lower sideband. That is, the detuning of
the four drives are ∆jk = ωjk − ωc,j with ∆11 = ∆21 = −Ω1 − δ and ∆12 = ∆22 = −Ω2 + δ.

We separate mean and fluctuations in the microwave fields and move to a frame rotating at the cavity frequencies

âj = e−iωc,jt

(
(δâj) +

2∑
k=1

αjk e
−i∆jkt

)
(3)

where αjk is the coherent state amplitude due to the microwave drive with detuning ∆jk with j, k = 1, 2 and (δâj) describe the
fluctuations of the two microwave modes j = 1, 2. We then linearize the Hamiltonian by approximating

â†j âj ≈
(
δâ†j

)( 2∑
k=1

αjk e
−i∆jkt

)
+ H.c. (4)

To obtain a time-independent Hamiltonian we will assume that the system is in the resolved-sideband limit with respect to both
mechanical modes, i.e. Ω1,Ω2 � κ1, κ2, and that the two mechanical modes are well separated in frequency, i.e. |Ω1 − Ω2| �
Γm,1,Γm,2. Moving into a rotating frame with respect to the free evolution of the microwave modes, and keeping only non-
rotating terms, we obtain the effective Hamiltonian describing our system, which is given as equation (1) in the main manuscript,

Ĥ = −δ b̂†1b̂1 + δ b̂†2b̂2 + g11(â1b̂
†
1 + â†1b̂1) + g21(â2b̂

†
1 + â†2b̂1) + g12(â1b̂

†
2 + â†1b̂2) + g22(eiφâ2b̂

†
2 + e−iφâ†2b̂2). (5)

Here, gjk = g0,jk|αjk| are the optomechanical coupling strengths enhanced by the mean intracavity photon numbers njk =
|αjk|2 due to the drive at frequency ωjk and where we have renamed (δâj) → âj for notational convenience. Without loss of
generality, the phase of all but one coupling constant gjk can be chosen real. Here, we take all of them real and write out the
phase φ explicitly which is varied in our experiment.

From the Hamiltonian (supplementary eq. (5)) we derive the equations of motion for our system which can be written in
matrix form as [4, 5]

u̇ = M u + Luin (6)

with u = (â1, â2, b̂1, b̂2)T , uin = (â1,in, â2,in, â
(0)
1,in, â

(0)
2,in, b̂1,in, b̂2,in)T and uout = (â1,out, â2,out, â

(0)
1,out, â

(0)
2,out, b̂1,out, b̂2,out)

T , where

âi,in/out are the input-output modes of the external microwave feedline and â(0)
i,in/out are those corresponding to internal dissipation.

The matrix M reads

M =


−κ1

2 0 −ig11 −ig12

0 −κ2

2 −ig21 −ig22e
−iφ

−ig11 −ig21 +iδ − Γm,1
2 0

−ig12 −ig22e
+iφ 0 −iδ − Γm,2

2

 (7)



2

where the cavity dissipation rates are the sum of external and internal dissipation rates, i.e. κ1 = κex,1+κ0,1 and κ2 = κex,2+κ0,2,
and the matrix L reads

L =


√
κex,1 0

√
κ0,1 0 0 0

0
√
κex,2 0

√
κ0,2 0 0

0 0 0 0
√

Γm,1 0
0 0 0 0 0

√
Γm,2

 . (8)

Using the input-output relations for a one-sided cavity [4, 5]

uout = uin − LT u (9)

we can solve the input-output problem in the Fourier domain

uout(ω) = S(ω)uin(ω) (10)

with the scattering matrix

S(ω) = 16×6 + LT [+iω14×4 +M ]
−1

L. (11)

Eliminating the mechanical degrees of freedom from the equations of motion (supplementary eq. (6)) we obtain(
κ1

2 − iω + g2
11χ1(ω) + g2

12χ2(ω) g11χ1(ω)g21 + g12χ2(ω)g22e
+iφ

g11χ1(ω)g21 + g12χ2(ω)g22e
−iφ κ2

2 − iω + g2
21χ1(ω) + g2

22χ2(ω)

)(
â1

â2

)
=

( √
κex,1âin,1 +

√
κ0,1â

(0)
in,1 − ig11χ1(ω)

√
Γm,1b̂1,in − ig12χ2(ω)

√
Γm,2b̂2,in

√
κex,2âin,2 +

√
κ0,2â

(0)
in,2 − ig21χ1(ω)

√
Γm,1b̂1,in − ig22χ2(ω)e−iφ

√
Γm,2b̂2,in

)
(12)

where we introduced the mechanical susceptibilities χ−1
1 (ω) = Γm,1/2−i (δ + ω) and χ−1

2 (ω) = Γm,2/2+i (δ − ω). Inverting
the matrix in supplementary eq. (12) and exploiting the input-output relation (supplementary eq. (9)), we obtain equation (3) of
the main manuscript

S12(ω)

S21(ω)
=
g11χ1(ω)g21 + g12χ2(ω)g22e

+iφ

g11χ1(ω)g21 + g12χ2(ω)g22e−iφ
. (13)

Note that the expressions in the nominator and denominator in supplementary eq. (13) are equal to the matrix elements coupling
the two electromagnetic modes in supplementary eq. (12) which are the sum of the two (complex) amplitudes for the two
dissipative optomechanical pathways. Supplementary eq. (13) is used to generate Fig. 3 E of the main text, with all the parameters
(Γm,j , gij) independently measured.

For identical mechanical decay rates Γm,1 = Γm,2 = Γm and identical cooperativities C = Cij =
4g2ij

κiΓm,j
we find that the

transmission 2→ 1 vanishes on resonance ω = 0, i.e. S12 = 0, if

Γm

2δ
= tan

φ

2
. (14)

For a given δ, maximal transmission in the opposite direction 1→ 2 is then obtained for C = 1
2 + 2δ2

Γ2
m

and given by

|S21|2max =
κex,1κex,2

κ1κ2

4δ2

Γ2
m + 4δ2

=
κex,1κex,2

κ1κ2

(
1− 1

2C

)
. (15)

We see that for δ � Γm the optimal cooperativity C → ∞ and |S21(0)|2 → 1. Thus, we see that in this limit the electromagnetic
scattering matrix of our system becomes that of an ideal isolator, i.e. S11 = S12 = S22 = 0 and |S21| = 1.

The full scattering matrix Sij of supplementary eq. (11) is used in Supplementary Fig. 1 to show optimal transmission in each
direction for the symmetric case, with different values of the cooperativity. As the cooperativity increases, the overall bandwidth
of conversion increases to Γeff , but the nonreciprocal bandwidth stays constant. This can be seen in the ratio S12(ω)/S21(ω) in
supplementary eq. (13) that depends only on the bare mechanical susceptibilities χ1(ω) and χ2(ω).

For unequal decay rates Γm,1 6= Γm,2, but equal effective decay rates of the mechanical modes Γeff,j = Γm,j(1 + C1j + C2j),
nonreciprocity is obtained for Γ+

2δ = tan φ
2 off-resonance at a frequency ω = Γ+Γ−

4δ where Γ± = 1
2 (Γm,1 ± Γm,2). For unequal

decay rates Γm,1 6= Γm,2, but matched cooperativities Cjk = C, we find nonreciprocity for Γ+

2δ = tan φ
2 , but at ω = −Γ−δ

Γ+
.
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Supplementary Fig. 1. Microwave transmission of the nonreciprocal electromechanical device in each direction for different values of the
cooperativity C, derived from supplementary eq. (11) for the case of symmetric mechanical modes (Γm,1 = Γm,2 = Γm). The detuning δ and
the phase φ are set for maximal transmission according to supplementary eq. (15). As the cooperativity is increased, the overall bandwidth
of the frequency conversion increases to Γeff , however the bandwidth of nonreciprocal transmission stays constant and is on the order of the
intrinsic mechanical damping rate Γm. This illustrates the fact that the intrinsic dissipation of the mechanical oscillator is the underlying
resource for the nonreciprocity.

SUPPLEMENTARY NOTE 2: NOISE ANALYSIS OF THE DEVICE

In this note we analyse the noise properties of the nonreciprocal electromechanical device. We assume the bosonic input noise
operators obey

〈â1,in(t)â†1,in(t′)〉 = δ(t− t′) (16)

〈â2,in(t)â†2,in(t′)〉 = δ(t− t′) (17)

〈â(0)
1,in(t)â

(0)†
1,in (t′)〉 = δ(t− t′) (18)

〈â(0)
2,in(t)â

(0)†
2,in (t′)〉 = δ(t− t′) (19)

〈b̂1,in(t)b̂†1,in(t′)〉 = (n̄m,1 + 1)δ(t− t′) (20)

〈b̂2,in(t)b̂†2,in(t′)〉 = (n̄m,2 + 1)δ(t− t′), (21)

i.e. the baths of the microwave modes are assumed to be at zero temperature whereas the mechanical modes have a finite thermal
occupation n̄m,1 and n̄m,2, respectively.

The symmetrised output noise spectra [5] are determined by the scattering matrix of the device (supplementary eq. (11)) as
well as the noise properties of the microwave and mechanical baths (supplementary eq. (16) to (21)). Explicitly, we find that the
cavity output spectra are given by

S̄1,out(ω) =
1

2

∫ ∞
−∞
dt eiωt〈â†1,out(t)â1,out(0) + â1,out(0)â†1,out(t)〉

= 1
2

[
|S11(−ω)|2 + |S12(−ω)|2 + |S13(−ω)|2 + |S14(−ω)|2

]
+ |S15(−ω)|2(n̄m,1 + 1

2 ) + |S16(−ω)|2(n̄m,2 + 1
2 )
(22)

and

S̄2,out(ω) =
1

2

∫ ∞
−∞
dt eiωt〈â†2,out(t)â2,out(0) + â2,out(0)â†2,out(t)〉

= 1
2

[
|S21(−ω)|2 + |S22(−ω)|2 + |S23(−ω)|2 + |S24(−ω)|2

]
+ |S25(−ω)|2(n̄m,1 + 1

2 ) + |S26(−ω)|2(n̄m,2 + 1
2 ).
(23)

In the limit of overcoupled cavities κex,i ≈ κi and for the optimal phase φ and detuning δ, the noise emitted in the backward
direction 2→ 1 on resonance ω = 0 is

Nbw = S̄1,out(0) = |S11|2 ×
1

2
+ |S12|2 ×

1

2
+ |S15|2 ×

(
n̄m,1 +

1

2

)
+ |S16|2 ×

(
n̄m,2 +

1

2

)
= 0× 1

2
+ 0× 1

2
+

1

2
×
(
n̄m,1 +

1

2

)
+

1

2
×
(
n̄m,2 +

1

2

)
=

1

2
+
n̄m,1 + n̄m,2

2
,

(24)
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i.e. in the backward direction the noise of the device is dominated by the noise emitted by the mechanical oscillators.
The noise emitted in the forward direction 1→ 2 on resonance ω = 0 is

Nfw = S̄2,out(0) = |S21|2 ×
1

2
+ |S22|2 ×

1

2
+ |S25|2 ×

(
n̄m,1 +

1

2

)
+ |S26|2 ×

(
n̄m,2 +

1

2

)
=

(
1− 1

2C

)
× 1

2
+ 0× 1

2
+

1

4C
×
(
n̄m,1 +

1

2

)
+

1

4C
×
(
n̄m,2 +

1

2

)
=

1

2
+
n̄m,1 + n̄m,2

4C
,

(25)

i.e. in the forward direction the noise contribution from the mechanical oscillators vanishes at large cooperativity C � 1.
Therefore, intriguingly, the noise emitted on resonance by the nonreciprocal device is not symmetric in the forward and backward
directions.

SUPPLEMENTARY NOTE 3: NOISE INTERFERENCE AS ORIGIN OF ASYMMETRIC NOISE EMISSION

In the previous note we concluded that the circuit emits more noise in the backward direction as compared to the forward
direction. This is also corroborated by the experimental data, shown in Fig. 4 in the main text. In the following, in order to
understand the different noise performance in the forward and backward direction, we consider two different points of view.
First, we derive the scattering amplitude from one mechanical resonator to one cavity, eliminating the other two modes. In this
picture, the imbalance can be understood as an interference of the two paths the noise can take in the circuit, analogously to
the interference in the microwave transmission. Second, we eliminate the mechanical resonators, but taking their input noise
into account. This leads to the same scattering matrix for the microwaves as discussed in the main text, but the mechanical
noise appears as additional, effective noise input operators for the cavities. In the second formulation we can therefore use our
knowledge of the microwave scattering matrix to deduce properties of the noise scattering.

Let us first consider the scattering from a mechanical resonator to cavities 1 and 2. Since in the experiment mechanical
resonator 1 is strongly cross-damped due to off-resonant couplings, the noise emitted stems almost exclusively from resonator
2. If we are interested in the noise scattering from mechanical resonator 2 to cavity 2, we can eliminate the other two modes and
drop their input noise. In frequency space, their equations of motion are(

χ−1
c,1(ω) −ig11

−ig∗11 χ−1
1 (ω)

)(
â1

b̂1

)
=

(
ig12b̂2
ig∗21â2

)
+ noises. (26)

We drop the noise terms and solve for â1, b̂1(
â1(ω)

b̂1(ω)

)
=

1

χ−1
1 (ω)χ−1

c,1(ω) + |g11|2

(
χ−1

1 (ω) ig11

ig∗11 χ−1
c,1(ω)

)(
ig12b̂2(ω)
ig∗21â2(ω)

)
≡ χâ1b̂1(ω)

(
ig12

ig∗21

)(
b̂2(ω)
â2(ω)

)
,

(27)

where we defined the cavity susceptibility χ−1
c,i (ω) = κi/2 − iω and the susceptibility of the coupled system of modes â1, b̂1,

χâ1b̂1(ω). We turn to the other two modes, the ones that we are actually interested in. For those, we have a similar equation,
which can be obtained from interchanging 1↔ 2(

χ−1
2 (ω) −ig∗22

−ig22 χ−1
c,2(ω)

)(
b̂2(ω)
â2(ω)

)
=

(
ig∗12

ig21

)(
â1(ω)

b̂1(ω)

)
+

(√
Γm,2b̂2,in(ω)√
κ2â2,in(ω)

)
. (28)

Eliminating the modes â1, b̂1 with supplementary eq. (27), we arrive at

(√
Γm,2b̂2,in(ω)√
κ2â2,in(ω)

)
=

(χ−1
2 (ω) −ig∗22

−ig22 χ−1
c,2(ω)

)
−

(
ig∗12

ig21

)(
χ−1

1 (ω) ig11

ig∗11 χ−1
c,1(ω)

)(
ig12

ig∗21

)
χ−1

1 (ω)χ−1
c,1(ω) + |g11|2

(b̂2(ω)
â2(ω)

)

≡
[
χ−1

b̂2â2
(ω)−

(
ig∗12

ig21

)
χâ1b̂1(ω)

(
ig12

ig∗21

)](
b̂2(ω)
â2(ω)

)
.

(29)
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In the second line, we have formulated the equation in terms of the susceptibilities of the two subsystems (â1, b̂1) and (â2, b̂2).
This equation is a bit complicated, but we note that the coupling between â2 and b̂2 is

iTâ2b̂2(ω) = −ig22

[
1− e−iφp

C12C21/(C22C11)

1 + (χc,1(ω)χ1(ω)|g11|2)
−1

]
. (30)

Analogously, changing the indices referring to the cavity, we obtain the coupling between â1 and b̂2

iTâ1b̂2(ω) = −ig12

[
1− e+iφp

C11C22/(C12C21)

1 + (χc,2(ω)χ1(ω)|g21|2)
−1

]
, (31)

The coupling phase φp appears as the relative phase between indirect and direct coupling path, as for the microwave signal trans-
mission. Equations (30) and (31) demonstrate that the transmission of noise from the mechanical resonators to the microwave
cavities is subject to interference, which ultimately leads to the difference in noise emitted in the forward versus the backward
direction.

In a second picture, we can also understand the mechanical noise interference in terms of the nonreciprocity in the scattering
matrix for the microwave modes. In order to do so, we solve the equations of motion for the mechanical resonators (given in
supplementary eq. (6)), which leads to

b̂j(ω) = χj(ω)

[
i
∑
i

g∗ij âi(ω) +
√

Γm,j b̂j,in(ω)

]
. (32)

We obtain equations that only relate the cavities(
χ−1
c,1(ω) + iT11(ω) iT12(ω)

iT21(ω) χ−1
c,2(ω) + iT22(ω)

)(
â1(ω)
â2(ω)

)
= i

(
g11 g12

g21 g22

)(√
Γm,1χ1(ω)b̂1,in(ω)√
Γm,2χ2(ω)b̂2,in(ω)

)
+

(√
κ1â1,in(ω)√
κ2â2,in(ω)

)
, (33)

where

iTij(ω) ≡ −i
∑
k

χk(ω)gikg
∗
jk. (34)

We can think of mechanical noise as coloured and correlated noise in the optical inputs. That is, consider the replacement(√
κ1ĉ1,in(ω)√
κ2ĉ2,in(ω)

)
≡ i
(
g11 g12

g21 g22

)(√
Γm,1χ1(ω)b̂1,in(ω)√
Γm,2χ2(ω)b̂2,in(ω)

)
. (35)

The effective noise ĉi,in is both coloured 〈ĉ†1,in(ω)ĉ1,in(ω′)〉 6= δ(ω + ω′)n̄1,eff and correlated 〈ĉ†1,in(ω)ĉ2,in(ω′)〉 6= 0.
Using the input-output relation âout = âin −

√
κâ, the cavity output is given by(

â1,out(ω)
â2,out(ω)

)
= S(ω)

(
â1,in(ω)
â2,in(ω)

)
+ [S(ω)− 12]

(
ĉ1,in(ω)
ĉ2,in(ω)

)
, (36)

where in the last step we have identified the 2-by-2 optical scattering matrix S(ω) that relates the cavity inputs to the outputs
âi,out(ω) =

∑
j Sij(ω)âj,in(ω). The fact that supplementary eq. (36) contains mechanical noise as well, but can be written

entirely in terms of the optical scattering matrix constitutes the central result here. Since the two effective input noises ĉi,in are
coloured and correlated, they can interfere.

Most importantly, we can consider what happens when the circuit is impedance matched to the signal and perfectly isolating.
We choose the detunings δ1 = Γm,1δ/2, δ2 = −Γm,2δ/2, for some dimensionless parameter δ. For simplicity, let us choose all
cooperativities to be equal C = Cij . For δ2 = 2C − 1 (impedance matching), the optical scattering matrix of the isolator is (up
to some irrelevant phase)

S(0) =

(
0 0√

1− 1/(2C) 0

)
≡ T

(
0 0
1 0

)
. (37)

The cavity output on resonance is(
â1,out
â2,out

)
= T

(
0
â1,in

)
− i√

2
C
(

eiφp 1
1− Teiφp 1− T

)(
b̂1,in(0)

b̂2,in(0)

)
. (38)

As C → ∞, T → 1 and φp = arccos(1− 1/C)→ 0, such that the second cavity does not receive any noise, which is due to an
interference of ĉ1,in with ĉ2,in. In the backward direction, no interference can take place, since cavity 2 is isolated from cavity 1.
As a consequence, the number of noise quanta emerging from cavity 1 on resonance is Nbw = (n̄m,1 + n̄m,2 + 1)/2.
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SUPPLEMENTARY NOTE 4: OPTOMECHANICAL CIRCULATOR

In this note we present a scheme for a circulator based on the same principles as the isolator previously discussed. The scheme
naturally overcomes the shortcomings of the isolator, becoming wideband and quantum limited in the high cooperativity limit.

We consider three microwave modes (described by their annihilation operators â1, â2, â3) with resonance frequencies ωc,1,
ωc,2, ωc,3 and dissipation rates κ1, κ2, κ3. These three microwave modes are coupled to two mechanical modes (described by
the annihilation operators b̂1, b̂2) with resonance frequencies Ω1, Ω2 and dissipation rates Γm,1 and Γm,2. The optomechanical
coupling strengths gij are taken to be real and we define three phases φ1, φ2 and φ3 associated respectively to the couplings
g11, g21 and g31. The three cavities are driven with two microwave tones each. These six tones are close to the lower motional
sidebands, with detunings of ∆11 = ∆21 = ∆31 = −Ω1 + δ1 and ∆12 = ∆22 = ∆32 = −Ω2 + δ2. The cooperativities are set
to be equal for all couplings, with C = Cij =

4gij
κiΓj

.
The linearised Hamiltonian that describes the system, in a frame rotating with the cavity frequencies and keeping only time-

constant terms is given by

Ĥ =δ1b̂
†
1b̂1 + δ2b̂

†
2b̂2

+ g11(â†1b̂1e
iφ1 + â1b̂

†
1e
−iφ1) + g12(â†1b̂2 + â1b̂

†
2)

+ g21(â†2b̂1e
iφ2 + â2b̂

†
1e
−iφ2) + g22(â†2b̂2 + â2b̂

†
2)

+ g31(â†3b̂1e
iφ3 + â3b̂

†
1e
−iφ3) + g32(â†3b̂2 + â3b̂

†
2).

(39)

From this Hamiltonian, we derive the equations of motion for our system in the matrix form (as in supplemen-
tary eq. (6)) with u = (â1, â2, â3, b̂1, b̂2)T , uin = (â1,in, â2,in, â3,in, â

(0)
1,in, â

(0)
2,in, â

(0)
3,in, b̂1,in, b̂2,in)T and uout =

(â1,out, â2,out, â3,out, â
(0)
1,out, â

(0)
2,out, â

(0)
3,out, b̂1,out, b̂2,out)

T . The matrix M is here given by

M =


−κ1

2 0 0 −ig11e
iφ1 −ig12

0 −κ2

2 0 −ig21e
iφ2 −ig22

0 0 −κ3

2 −ig31e
iφ3 −ig32

−ig11e
−iφ1 −ig21e

−iφ2 −ig31e
−iφ3 −Γm,1

2 + iδ1 0

−ig12 −ig22 −ig32 0 −Γm,2
2 + iδ2

 , (40)

where the cavity dissipation rates are the sum of the external and internal dissipation rates, i.e. κi = κex,i + κ0,i. The matrix L
is here

L =


√
κex,1 0 0

√
κ0,1 0 0 0 0

0
√
κex,2 0 0

√
κ0,2 0 0 0

0 0
√
κex,3 0 0

√
κ0,3 0 0

0 0 0 0 0 0
√

Γm,1 0
0 0 0 0 0 0 0

√
Γm,2

 . (41)

Using the input-output relation (supplementary eq. (9)) and the matrix form of the equations of motion (supplementary eq. (6)),
we can compute the scattering matrix S(ω) similarly to supplementary eq. (11).

We choose to operate the circulator in a way that suppresses the propagation in the clockwise direction, i.e. S12(0) = 0,
S23(0) = 0, and S31(0) = 0. For this suppression to occur on resonance (ω = 0), δ1 must scale with Γm,1 and δ2 with Γm,2 so
we define δ1 = αΓm,1 and δ2 = βΓm,2. The equations corresponding to S12(0) = S23(0) = S31(0) = 0 are

−2iα− 2iβei(φ1−φ2) − C(1− ei(φ1−φ3) − ei(φ3−φ2) + ei(φ1−φ2))− (1 + ei(φ1−φ2)) = 0, (42)

−2iα− 2iβei(φ2−φ3) − C(1− ei(φ2−φ1) − ei(φ1−φ3) + ei(φ2−φ3))− (1 + ei(φ2−φ3)) = 0, (43)

−2iα− 2iβei(φ3−φ1) − C(1− ei(φ3−φ2) − ei(φ2−φ1) + ei(φ3−φ1))− (1 + ei(φ3−φ1)) = 0. (44)

Analysing this set of equations, we see that only two phases are independent. Setting φ1 = 2π/3, φ2 = −2π/3 and φ3 = 0
leads to a set of fully degenerate equations. We then obtain S13(0) = S32(0) = S21(0) = 0 if

2
√

3β − 3C − 1 + i
(

4α− 2β + 3
√

3C +
√

3
)

= 0. (45)

Solving supplementary eq. (45) with respect to the cooperativity C gives

C =
2β√

3
− 1

3
and α = −β. (46)
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We note that if α 6= −β, then C must contain an imaginary part leading to complex coupling strengths, which is inconsistent
with their definition as being real. Moreover, C must be positive (such that gij ∈ R) and non-zero (else gij = 0). The lower
bound for β is thus given by 1/(2

√
3).

We can write the transmission in the counter-clockwise direction (|S13|2, |S32|2 and |S21|2) on resonance as

|S13|2 =
κex,1κex,3

κ1κ3

1

(1 + 1
3C )2

, (47)

|S32|2 =
κex,3κex,2

κ3κ2

1

(1 + 1
3C )2

, (48)

|S21|2 =
κex,2κex,1

κ2κ1

1

(1 + 1
3C )2

. (49)

We find that, in the case of overcoupled cavities κi ≈ κex,i, the transmission approaches unity with increasing cooperativity.
The symmetrised output noise spectra is computed as in the supplementary note 2. In the limit of overcoupled cavities,

κi ≈ κex,i, the noise emitted on resonance at each port is given by

N =
1

2
+

3C
(3C + 1)2

(n̄m,1 + n̄m,2). (50)

In the limit of large cooperativity, the noise contribution from the mechanical oscillators is entirely suppressed, leaving only
vacuum noise amounting to half a quantum.
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